The tricopter

The tricopter
The tricopter

Hi everyone!

We have been pretty busy since we got our Ardupilot and setting it up was so easy and fun that we decided that it could be fun to get another multicopter with a  "ready to fly" flight controller, so we would just have to take care of building the frame ! We decided to build a multicopter and use it with a cheap multiwii board from hobbyking 🙂

As great as the Ardupilot is, we didn't want to pay 180$ again for a flight controller, and we thought that this time we didn't need a full fledge controller, with GPS and telemetry; just something to have fun with. So we started to look for a cheap multiwii board, and we found "the one" on hobbyking: the Multiwii 328P flight controller.

Our Multiwii flight controller

The price of this thing (28$...) is actually pretty insane, and I would recommend this board to anyone who would like to work with IMUs, to track motion and position, not just to power a multicopter! Just plug it into your computer, launch the Arduino IDE, select Arduino Duelmilanove 328 in the board list and you're ready to go! We definitely should have bought something like this when we started to work on our quadcopter, it woud have been so much cheaper than buying the sensors separately and would have avoided so much troubles with soldering/ fitting everyhting on a tiny PCB !

We decided to build a tricopter because we always thought that their flight behavior seemed really nice and we wanted something a bit smaller and a bit more nervous than our quadcopter. Our quadcopter was a pretty standard one, with arms 25 centimers wide, a good size to get stability and space to carry a GoPro and a FPV setup. We decided to make the tricopter is a bit smaller, with motors 20 centimeters away from the center of the tricopter triangle and to use the same Turnigy SK3 1130kv motors as on our quad. They work great and we had 3 motors left, so no need to buy new ones ! And with these motors, the tricopter would have enough power to carry a GoPro 🙂

While we took the "hardcore" approach with our full carbon quadcopter, designing it with CATIA, cutting it with a CNC mill, the tricopter construction was quite the opposite. It took us just a couple of hours to build it from scratch with no real plans. The hardest part was the rear servo mecanism, as it always is with tricopters.

Tricopter
The rear motor of the tricopter
Tricopter
The rear part is made of an aluminum part and a Meccano part screwed together and attached to the servo on one side, and to bearings on the other side.
Tricopter
The rear digital servo is a Turnigy TGY-2216MG.

Everything is made of carbon fiber, so it's pretty lightweight and power efficient. We get more than 11 minutes of flight with a 2200 mAh 3S LiPo battery.And it flies very, very well. Tricopters are very fun to pilot, there behavior is really close to an Heli behavior, it kinds of floats in the air and vertical descents can be very fast and stable. The yaw control is obviously much stronger than on a quadcopter so it can be maneuvered easily in very small areas. It carries a GoPro and its case without any problems, so we think it's the perfect toy to play with if you want to film withou stabilization nor FPV!

Tricopter
The zip-tied multiwii, a receiver, a 3S battery, and you're good to go 🙂
Tricopter
The bottom part fo the tricopter, with space for FPV equipment.

If you are considering building a drone, you should really consider building a tricopter. It may be harder to figure out how to handle the yaw servo, but it's so fun to play with! Go for it 🙂

A little video where we used the tricopter (80% of the footage)

Stay tuned for more fun with drones and other things 🙂